LLM 어플리케이션에서의 Tool Calling: AI가 더 똑똑해지는 방법
·
AI/어플리케이션 개발
LLM(대형 언어 모델) 어플리케이션이 갈수록 더 많은 일들을 할 수 있게 되면서, "Tool calling" 기능은 그중에서도 가장 주목할 만한 혁신 중 하나로 자리 잡고 있습니다. 이 기능은 AI가 외부의 도구나 서비스에 접근하여 문제를 해결하거나 정보를 가져오는 능력을 의미합니다. 이번 글에서는 Tool calling이 무엇인지, 어떻게 LLM 어플리케이션의 활용성을 확장하는지에 대해 살펴보겠습니다. Tool Calling이란?Tool calling은 LLM이 외부 도구나 API와 상호작용할 수 있는 기능입니다. LLM은 매우 강력하지만, 단독으로는 모든 작업을 수행하는 데 한계가 있습니다.LLM은 훈련된 데이터에 포함된 지식만을 활용할 수 있기 때문에 훈련 이후에 발생한 새로운 사건이나 정보를 알..
LLM 애플리케이션 개발 훑어보기 - LangChain #3 Model I/O
·
AI/어플리케이션 개발
Model I/O LangChain 패키지는 NLP 어플리케이션을 원활하게 만들기 위해서 필요한 여러 모듈을 제공합니다. 오늘은 그 중 Model I/O와 관련된 내용을 다룹니다. 이 모듈을 통해 LangChain은 모든 언어 모델과 상호 작용하고, 모델에 대한 입력을 관리하고 출력에서 정보를 추출하는 등의 작업을 수행할 수 있습니다. Prompts 언어 모델에 입력되는 것은 보통 프롬프트라 불립니다. 종종 앱에서 사용자 입력은 모델에 직접적으로 입력되는 것이 아닙니다. 그 대신, 사용자의 입력은 어떤 방식으로든 변형되어 최종적으로 모델에 들어가는 문자열 또는 메시지의 형태로 생성됩니다. 사용자 입력을 받아 최종 문자열 또는 메시지로 변환하는 객체를 PromptTemplate이라고 합니다. LangCha..
LLM 애플리케이션 개발 훑어보기 - LangChain #2 LangChain Expression Language (LCEL)
·
AI/어플리케이션 개발
LangChain Experssion Language(LCEL) LangChain Expression Language(LCEL)은 체인을 쉽게 구성할 수 있는 선언적 방식입니다. LCEL은 가장 간단한 "프롬프트 + LLM" 체인부터 가장 복잡한 체인까지 코드 변경 없이 프로토타입을 프로덕션에 적용하는 것을 지원하도록 설계되었습니다. LangChain 공식 문서에서는 LCEL을 사용해야 하는 이유를 다음과 같이 소개하고 있습니다. Streaming support: LCEL로 체인을 구축하면 첫 번째 토큰에 도달하는 시간(첫 번째 출력 청크가 나올 때까지 경과한 시간)을 최대한 단축할 수 있습니다. Async support: LCEL로 구축된 모든 체인은 동기식 API(예: 프로토타이핑 중 Jupyter ..
LLM 애플리케이션 개발 훑어보기 - LangChain #1 Intro 및 QuickStart
·
AI/어플리케이션 개발
Introduction LangChain은 인공 지능(AI) 및 그 기계 학습 하위 집합으로 작업하는 소프트웨어 개발자가 대규모 언어 모델을 다른 외부 구성 요소와 결합하여 LLM 기반 애플리케이션을 개발할 수 있는 오픈 소스 프레임워크입니다. LangChain의 목표는 OpenAI의 GPT-3.5 및 GPT-4와 같은 강력한 LLM을 다양한 외부 데이터 소스에 연결하여 자연어 처리(NLP) 애플리케이션의 이점을 활용하고 생성하는 것입니다. 파이썬, 자바스크립트 또는 타입스크립트 프로그래밍 언어에 대한 경험이 있는 개발자, 소프트웨어 엔지니어, 데이터 과학자는 해당 언어로 제공되는 LangChain의 패키지를 사용할 수 있습니다. LangChain은 2022년 공동 창립자인 해리슨 체이스와 안쿠시 골라에..